In graphene-based nano junctions, the edge-topology of graphene nanoribbons (GNRs) is crucial to modulate the spin-dependent transport through quantum interference (QI). Herein we have investigated the quantum transport properties of armchair GNRs (AGNRs) and zig-zag GNRs (ZGNRs) nanoribbons employing density functional theory in combination with nonequilibrium Green’s function (NEGF-DFT) techniques. The spin-polarized transmission spectra, with spin-filtering efficiency up to 50%, are observed for the ZGNRs in the low-lying ferromagnetic state. Such spin response in the transmission spectra remains silent for the non-magnetic AGNR and antiferromagnetic ZGNR in their respective ground states. Further, upon reducing the width of ZGNR, we observed that the evolved spin-dependent QI features leading to high spin-filtering efficiency.
Recent Comments
Hello world!
A WordPress CommenterInterdum luctus accu samus habitant error nostra nostrum
Fletch SkinnerInterdum luctus accu samus habitant error nostra nostrum
Chauffina CarrDoloremque velit sapien labore eius lopren itna
Hans DownBloke cracking goal the full monty get stuffed mate posh.
Fletch Skinner