We have investigated the effect of nitroxide radical-water hydrogen bonding (NO(*)…H(2)O) on the intramolecular magnetic exchange interaction (J) for biologically relevant aminoxyl diradicals. We adopt a combination of broken-symmetry density functional theory and the quantum mechanics/molecular mechanics (QM/MM) approach. We find that the presence of hydrogen bonding reorients the radical spin density on -NO(*). This phenomenon reduces the effective distance between the two interacting localized spin centers that eventually increases the intramolecular magnetic exchange interaction. We have also investigated the functional variation of the magnetic exchange interaction, using various GGA (BLYP, PBE, HCTH407), meta-GGA (TPSS, VXSC), and hybrid (O3LYP, B3LYP, B3P86, B3PW91, and PBE0) functionals.
Recent Comments
Hello world!
A WordPress CommenterInterdum luctus accu samus habitant error nostra nostrum
Fletch SkinnerInterdum luctus accu samus habitant error nostra nostrum
Chauffina CarrDoloremque velit sapien labore eius lopren itna
Hans DownBloke cracking goal the full monty get stuffed mate posh.
Fletch Skinner